
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapters 3-4:
Using Objects

2Copyright 2006 by Pearson Education

Chapter outline
� objects

� Point objects

� String objects

� value vs. reference semantics
� comparing objects

3Copyright 2006 by Pearson Education

reading: 3.3

Using objectsUsing objects

4Copyright 2006 by Pearson Education

Objects and classes
� object: An entity that contains data and behavior.

� Variables inside the object store its data.

� Methods inside the object implement its behavior.

� class: A program, or a type of objects.
� Classes' names are uppercase (e.g. Point , Color).

� Examples:
� Scanner objects read data from the keyboard and other sources.

� DrawingPanel objects represent graphical windows.

� What data and behavior do these objects have?

5Copyright 2006 by Pearson Education

Constructing objects
� Constructing (creating) objects, general syntax:

<type> <name> = new <type> (<parameters>);

� Examples:
Scanner console = new Scanner(System.in);
DrawingPanel window = new DrawingPanel(300, 200);
Color orange = new Color(255, 128, 0);
Point p = new Point(7, -4);

6Copyright 2006 by Pearson Education

Calling methods of objects
� Objects have methods that your program can call.

� The methods often relate to the data inside the object.

� Calling an object's method, general syntax:

<object> . <method name> (<parameters>)

� Examples:

Scanner console = new Scanner(System.in);
int age = console.nextInt();

Point p1 = new Point(3, 4);
Point p2 = new Point(0, 0);
System.out.println(p1.distance(p2)); // 5.0

7Copyright 2006 by Pearson Education

Point objects
� Java has a class of objects named Point .

� They store two values, an (x, y) pair, in a single variable.

� They have useful methods we can call in our programs.

� To use Point , you must write:

import java.awt.*;

� Two ways to construct a Point object:

Point <name> = new Point(<x>, <y>);

Point <name> = new Point(); // the origin (0, 0)

� Examples:

Point p1 = new Point(5, -2);
Point p2 = new Point();

8Copyright 2006 by Pearson Education

Point data and methods
� Data stored in each Point object:

� Methods of each Point object:

� Point objects can also be printed using println statements:

Point p = new Point(5, -2);
System.out.println(p); // java.awt.Point[x=5,y=-2]

how far away the point is from point pdistance(p)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

9Copyright 2006 by Pearson Education

Point example
� Write a program that computes a right triangle's perimeter, given
two of its side lengths a and b. (It's the sum of sides a+b+c)

import java.awt.*; // for Point
import java.util.*; // for Scanner

public class TrianglePerimeter {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("side a? ");
int a = console.nextInt();
System.out.print("side b? ");
int b = console.nextInt();

// finish me
}

}

Example Output:
side a? 12
side b? 5
perimeter is 30.0

10Copyright 2006 by Pearson Education

Point example answer
� Computing a right triangle's perimeter (sum of sides a+b+c):

import java.awt.*; // for Point
import java.util.*; // for Scanner

public class TrianglePerimeter {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("side a? ");
int a = console.nextInt();
System.out.print("side b? ");
int b = console.nextInt();

Point p1 = new Point(); // 0, 0
Point p2 = new Point(a, b);
double c = p1.distance(p2);
double perimeter = a + b + c;
System.out.println("perimeter is " + perimeter);

}
}

11Copyright 2006 by Pearson Education

reading: 3.3, 4.3

Value and reference Value and reference

semanticssemantics

12Copyright 2006 by Pearson Education

Swapping primitive values
� Consider the following code to swap two int variables:

public static void main(String[] args) {
int a = 7;
int b = 35;

// swap a with b (incorrectly)
a = b;
b = a;

System.out.println(a + " " + b);
}

� What is wrong with this code? What is its output?

� The red code should be replaced with:
int temp = a;
a = b;
b = temp;

13Copyright 2006 by Pearson Education

A swap method?
� We might want to make swapping into a method.

� Does the following swap method work? Why or why not?

public static void main(String[] args) {
int a = 7;
int b = 35;

// swap a with b
swap(a, b);

System.out.println(a + " " + b);
}

public static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

14Copyright 2006 by Pearson Education

Value semantics
� value semantics: Behavior where variables are copied
when assigned to each other or passed as parameters.

� When one primitive variable is assigned to another, its value is copied.

� Modifying the value of one variable does not affect others.

int x = 5;
int y = x; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

x

y

15Copyright 2006 by Pearson Education

Reference semantics
� reference semantics: Behavior where multiple
variables can refer to a common value (object).

� Variables that store objects are called reference variables.

� Reference variables store the address of an object in memory.

Point p1 = new Point(3, 8);

� Why is it done this way?

� efficiency. Copying large objects would slow down the program.

� sharing. It's useful to share an object's data between methods.

8y3xp1

16Copyright 2006 by Pearson Education

Multiple references
� If one reference variable is assigned to another, the

object is not copied. The variables share the object.

� Calling a method on either variable will modify the same object.

Point p1 = new Point(3, 8);
Point p2 = new Point(2, -4);
Point p3 = p2;

p3.translate(5, 1);
System.out.println(p2);

// OUTPUT:
// java.awt.Point[x=7,y=-3]

8y3xp1

-4y2xp2

p3

-3y7x

17Copyright 2006 by Pearson Education

Objects as parameters
� When an object is passed as a parameter, it is not
copied. The same object is shared with the parameter.

public static void main(String[] args) {
Point p1 = new Point(3, 7);
example(p1);
System.out.println(p1);

}

public static void example(Point p2) {
p2.setLocation(-1, 3);

}

� This is useful because we can pass an object to a method, let

the method change its data, and we will also see that change.

7y3xp1

p2

3y-1x

18Copyright 2006 by Pearson Education

reading: 3.3

String objectsString objects

19Copyright 2006 by Pearson Education

String objects
� string: An object storing a sequence of text characters.

� Unlike most other objects, a String is not created with new.

String <name> = " <text>";

String <name> = <expression>;

� Examples:

String name = "Marla Singer";

int x = 3, y = 5;
String point = "(" + x + ", " + y + ")";

20Copyright 2006 by Pearson Education

Indexes
� The characters are numbered with 0-based indexes:

String name = "P. Diddy";

� The individual characters are values of type char (seen later)

char

index 2

yddiD.P

7654310
name

21Copyright 2006 by Pearson Education

String methods
� Useful methods of each String object:

� These methods are called using the dot notation:

String example = "speak friend and enter";
System.out.println(example.length());

a new string with all uppercase letterstoUpperCase()

a new string with all lowercase letterstoLowerCase()

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 omitted, grabs till end of string

substring(index1, index2)

or

substring(index1)

number of characters in this stringlength()

index where the start of the given string
appears in this string (-1 if it is not there)

indexOf(str)

DescriptionMethod name

22Copyright 2006 by Pearson Education

String method examples
// index 012345678901
String s1 = "Stuart Reges";
String s2 = "Marty Stepp";
System.out.println(s1.length()); // 12
System.out.println(s1.indexOf("e")); // 8
System.out.println(s1.substring(7, 10)); // Reg

String s3 = s2.substring(3, 8);
System.out.println(s3.toLowerCase()); // ty st

� Given the following string:

// 0123456789012345678901
String book = "Building Java Programs";

� How would you extract the word "Java" ?

� Change book to store "BUILDING JAVA PROGRAMS" .

� How would you extract the first word from any general string?

23Copyright 2006 by Pearson Education

String condition methods
� These String methods can be used as if conditions:

String name = console.next();

if (name.startsWith("Dr.")) {
System.out.println("Is he single?");

} else if (name.equalsIgnoreCase("LUMBERG")) {
System.out.println("I need your TPS reports.");

}

whether one string contains the other's
characters at its start

startsWith(str)

whether one string contains the other's
characters at its end

endsWith(str)

whether two strings contain the same
characters, ignoring upper vs. lower case

equalsIgnoreCase(str)

whether two strings contain exactly the
same characters

equals(str)

DescriptionMethod

24Copyright 2006 by Pearson Education

Strings question
� Write a program that compares two words typed by the user to see
whether they rhyme (end with the same last two letters) and/or
alliterate (begin with the same letter).

� Example logs of execution:
(run #1)
Type two words: car STAR
They rhyme!

(run #2)
Type two words: bare bear
They alliterate!

(run #3)
Type two words: sell shell
They alliterate!
They rhyme!

25Copyright 2006 by Pearson Education

Strings answer
// Determines whether two words rhyme and/or alliterate.
import java.util.*;

public class Rhyme {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("Type two words: ");
String word1 = console.next().toLowerCase();
String word2 = console.next().toLowerCase();

// check whether they end with the same two letters
if (word2.length() >= 2 &&

word1.endsWith(word2.substring(word2.length() - 2))) {
System.out.println("They rhyme!");

}

// check whether they alliterate
if (word1.startsWith(word2.substring(0, 1)) {

System.out.println("They alliterate!");
}

}
}

26Copyright 2006 by Pearson Education

Modifying Strings
� Methods like substring , toLowerCase , toUpperCase ,

etc. actually create and return a new string:

String s = "lil bow wow";
s.toUpperCase();
System.out.println(s); // lil bow wow

� To modify the variable, you must reassign it:

String s = "lil bow wow";
s = s.toUpperCase();
System.out.println(s); // LIL BOW WOW

27Copyright 2006 by Pearson Education

Comparing objects
� Relational operators such as < and == fail on objects.

� The == operator on String s often evaluates to false even
when two String s have the same letters.

� Example (bad code):

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name == "Barney") {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

� This code will compile, but it will never print the song.

28Copyright 2006 by Pearson Education

The equals method
� Objects (e.g. String , Point , Color) should be

compared using a method named equals .

� Example:

Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name.equals("Barney")) {

System.out.println("I love you, you love me,");
System.out.println("We're a happy family!");

}

29Copyright 2006 by Pearson Education

== vs. equals
� == compares whether two variables refer to the same object.

� equals compares whether two objects have the same state.

� Given the following code:

Point p1 = new Point(3, 8);
Point p2 = new Point(3, 8);
Point p3 = p2;

� Which tests are true?

p1 == p2

p1 == p3

p2 == p3

p1.equals(p2)

p1.equals(p3)

p2.equals(p3)

8y3xp1

8y3xp2

p3

